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Talk Abstract/Outline
Exploring Fundamental Dissipation Limits of Reversible Computing 
Technologies from Non-equilibrium Quantum Thermodynamics
 Some classic results in the thermodynamics of computing:

 Landauer (1961) – Information loss in computation implies entropy increase / energy dissipation.
 Bennett (1973) – Information loss in computation can be avoided through reversible computing.

 Are these statements still valid even in a non-equilibrium thermodynamic context?
 YES! – We review why this is rigorous in a modern quantum thermodynamic theoretical context.
 We also review a couple of types of engineering implementations already under development.

 Important open question: How to formulate general limits on dissipation that apply 
even to reversible computations?
 E.g., limits as a function of speed, temperature, coupling to environment, etc.
 We outline an approach towards answering this question, and show some first steps.
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1. Classic Thermodynamics of 
Computing – A Brief Review

Explor ing Fundamenta l  Diss ipat ion  Limits  o f  
Rever s ib le  Comput ing  Technologies  f r om Non-
equi l ibr ium Quantum Ther modynamics



Fundamental Physics of Computing—Earliest Roots (slide 1 of 2)

This topic can be placed on a firm theoretical foundation using tools from 
the field of  non-equilibrium quantum thermodynamics (NEQT), the 
theoretical formulation of  which derives from the mathematical foundations 
first laid down by von Neumann (1927). 

◦ However, even before von Neumann, the roots of  modern stat. mech., 
thermodynamics and quantum theory were already inseparable.
◦ What we know today as “Boltzmann’s constant” 𝑘 was actually first derived by Planck, in the very same 

analysis that simultaneously first resolved the value of  what we now call “Planck’s constant” ℎ.

◦ Statistical mechanics could never possibly have become a complete, coherent foundation for 
thermodynamics without the concomitant discovery of  quantum mechanics! Quantization is crucial.

Some key foundational principles of  NEQT are the following:
◦ Unitary time evolution of  all closed systems (including the whole universe )

◦ NOTE: von Neumann entropy 𝑆 = −Tr(𝜌 ln 𝜌) is conserved by unitary transforms.

◦ Environment of  an open system is treated as independent and thermal.
◦ Entropy increase can be viewed as merely a natural consequence of  our inability as modelers to track 

quantum correlations (incl. entanglement) with (or within) any complex thermal environment 𝔈.

Perspective is summarized in the definition of  thermal operations
derived from the (1955) Stinespring Dilation Theorem:
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Fundamental Physics of Computing—Earliest Roots (slide 2 of 2)

“Shannon’s” 1948 entropy formula was historically 
rooted in Boltzmann’s 1872 “H-theorem” (cf. ∗ quantity below)

◦ Its general importance was already well established in statistical mechanics by 
the time of  von Neumann’s (1920s) work on quantum thermodynamics.

However, Shannon did introduce some key new concepts such as mutual 
information, .

◦ The concept that information-bearing digital states can be identified with 
sets of  (digitally interpreted) microstates also dates back to this era.

NOTE: Shannon never once addressed energy dissipated, only invested.
◦ There is nothing in Shannon’s (or von Neumann’s) work that contradicts RC.

7



Landauer’s Principle from Statistical 
Physics & Information Theory

When stated correctly, proving Landauer’s Principle is elementary…
◦ I.e., it takes only a small handful of  simple logical steps to prove;
◦ Depends only on basic facts of  statistical physics and information theory.

Here’s a correct statement of  Landauer’s Principle: 
◦ Within any computational process composed out of  local, digital primitive transformations, the oblivious (i.e., 

isolated and unconditional) erasure (to a standard state) of  a digital subsystem that possesses marginal digital 
entropy (entropy after restriction of  the joint distribution to ) and was deterministically computed 
from another subsystem necessarily increases total physical entropy by at least .
◦ Corollary: Free energy is reduced by Δ𝐹 = −𝐻 𝑌 ⋅ 𝑇, and expulsion of  entropy to environment results in heat emission Δ𝑄 = 𝐻 𝑌 ⋅ 𝑇.
◦ Generalization: Any local reduction of  𝔜’s marginal entropy by any amount −Δ𝐻(𝑌) affects free energy and heat emission proportionately.

And here’s a simple proof  outline:
1. The Second Law of  Thermodynamics ( ), together with the statistical definition of  entropy, imply that 

microphysical dynamics must be bijective (this is reflected e.g. in the unitarity of  quantum time-evolution).
2. Given that was computed deterministically from , its conditional entropy , and therefore its 

marginal entropy is entirely accounted for by its mutual information with , i.e., . 
3. Because microphysics is bijective, local transformations cannot destroy the information but can only 

eject it out to some other subsystem (if  not part of  the machine’s stable, digital state, it’s in the thermal state).
4. Thermal environments, by definition, don’t preserve correlation information at all (as reflected by, e.g., thermal 

operations a la Stinespring); therefore, the total universe entropy gets increased by 
◦ This can be seen through the trace operation over 𝔈, or more simply by just observing that joint entropy 𝐻(𝑋, 𝑌) = 𝐻 𝑋 + 𝐻 𝑌 − 𝐼 𝑋; 𝑌

over two systems increases by 𝐼 𝑋; 𝑌  if  the original mutual information 𝐼 𝑋; 𝑌 gets replaced with a new value 𝐼′ 𝑋; 𝑌 = 0.
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Oblivious erasure of subsystem 𝔜 when 𝑦 = 𝑥

(For further details, see arXiv:1901.10327)

(We can also generalize from this a bit)



Basic Reversible Computing Theory

Fundamental theorem of  traditional reversible 
computing:

◦ A deterministic computational operation is (uncondi-
tionally) non-entropy-ejecting if  and only if  it is uncon-
ditionally logically reversible (i.e., injective over its entire 
domain).

Fundamental theorem of  generalized reversible 
computing:

◦ A specific (contextualized) deterministic computational 
process is (specifically) non-entropy-ejecting if  and 
only if  it is specifically logically reversible (injective over 
the set of  nonzero-probability initial states).
◦ Also, for any deterministic computational operation, which is 

conditionally reversible under some assumed precondition, then the 
entropy required to be ejected by that operation approaches 0 as the 
probability that the precondition is satisfied approaches 1.

Bottom line: To avoid requiring Landauer costs, it 
is sufficient to just have logical reversibility if  some specified 
preconditions are satisfied (and then satisfy them).

◦ This gives us a realistic (and more flexible!) basis for 
developing practical engineering implementations.
◦ An example of  this is provided by fully adiabatic CMOS.

9
Traditional Unconditionally

Reversible “Gates” (Operations)

Some Generalized Conditionally Reversible Operations

(For full proofs, see arxiv:1806.10183)



II. Examples of Reversible 
Computing Technologies 
Currently Under Development
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Perfectly Adiabatic Reversible Computing in CMOS
To approach ideal reversible computing in CMOS…

We must aggressively eliminate all sources of  non-
adiabatic dissipation, including:

◦ Diodes in charging path, “sparking,” “squelching,” 
◦ Eliminated by “truly, fully adiabatic” design.  (E.g., CRL, 2LAL).

◦ Can suffice to get down to a few aJ (10s of  eV) even before voltage optimization.

◦ Voltage level mismatches that dynamically arise on floating 
nodes before reconnection.
◦ Eliminated by static, “perfectly adiabatic” design.  (E.g., S2LAL).

We must also aggressively minimize standby power 
dissipation from leakage, including:

◦ Subthreshold channel currents.
◦ Ultra-low-T (e.g. 4K) operation helps with this.

◦ Tunneling through gate oxide.
◦ E.g., use thicker gate oxides.

Note: (Conditional) logical reversi-
bility follows from perfect adiabaticity!
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Shift Register Structure and Timing in 2LAL

Shift Register Structure and Timing in S2LAL

2LAL test chip
taped out at

Sandia, Aug. ‘20

(arxiv:2009.00448)

See Frank et al. “Exploring the Ultimate Limits of Adiabatic CMOS”, 38th IEEE Int’l Conf. on 
Computer Design (ICCD’20), 10.1109/ICCD50377.2020.00018



Examples of S2LAL Logic Gates

14-transistor AND gate, 16-transistor OR gate.

◦ Carefully designed to ensure that each internal node is 
always connected to either a constant or variable source.

◦ The structures shown are minimal, given the design constraints.

Inverting gates are done easily, by using signal pairs 
for complementary symbols:

◦ ଵ ଴

◦ ଵ ଵ ଴ ଴

◦ ଵ ଵ ଴ ଴

Also! Erik DeBenedictis invented an optimization to 
S2LAL that can compute the inverses as-needed, 
rather than always keeping both the 0,1 signal pairs 
around all the time: 

◦ See https://zettaflops.org/zf004/ .

12

AND OR

(These gates correctly support
conditionally reversible operations.)



Minimum Energy Scaling for Adiabatic CMOS 
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From M. Frank & K. Shukla, 
doi:10.3390/e23060701

Upshot for CMOS: As each 
device’s leakage conductance 𝐼୭୤୤

is decreased, the equilibration 
timescale 𝜏ୣ increases, and the 
technology’s minimum energy 
(given perfectly adiabatic, 
reversible designs) scales down 
with square-root proportionality.

𝐸ୢ୧ୱୱ,୫୧୬ ∝
1

𝜏ୣ 
∝ 𝐼୭୤୤



Latest Results from the “Adiabatic Circuits Feasibility Study”
Simulation Efforts at Sandia, funded via NSCI

Created schematic-level fully-adiabatic designs for 
Sandia’s in-house CMOS processes, including:

◦ Older, 350 nm process (blue curve)
◦ FET widths = 800 nm

◦ Newer, 180 nm process (orange, green curves)
◦ FET widths = 480 nm

Plotted energy dissipation per-transistor in shift 
registers at 50% activity factor (alternating 0/1)

◦ 2LAL (blue, orange curves)
◦ S2LAL (green curve)

In all of  these Cadence/Spectre simulations, 
◦ We assumed a 10 fF parasitic wiring load capacitance 

on each interconnect node.
◦ Logic supply ( ୢୢ) voltages were taken at the 

processes’ nominal values.
◦ 3.3V for the 350nm process; 1.8V in the 180nm process.

We expect these results could be significantly 
improved by exploring the parameter space over 
possible values of  ୢୢ and ୱୠ (substrate bias).
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2LAL Test Chip15

Layout by Robert Brocato Fabricated Die (photo credit: Darlene Udoni)



Adiabatic Reversible Computing in Superconducting Circuits

Work along this general line has roots that go all 
the way back to Likharev, 1977.

◦ Most active group recently is Prof. Yoshikawa’s group 
at Yokohama National University in Japan.

Logic style called Reversible Quantum Flux Parametron
(RQFP).

◦ Shown at right is a 3-output reversible majority gate.

◦ Full adder circuits have also been built and tested.

Simulations indicate that RQFP circuits can 
dissipate < kT ln 2 (even noting that T = 4K), at 
speeds on the order of  10 MHz

16

(doi:10.1109/TMAG.1977.1059351)



Existing Dissipation-Delay Products (DdP)—
Adiabatic Reversible Superconducting Circuits

Reversible adiabatic superconductor logic:
◦ State-of-the-art is the RQFP (Reversible Quantum Flux 

Parametron) technology from Yokohama National 
University in Japan.
◦ Chips were fabricated, function validated.

◦ Circuit simulations predict DdP is >1,000× lower than 
even end-of-roadmap CMOS.
◦ Dissipation extends far below the 300K Landauer limit (and even 

below the Landauer limit at 4K).

◦ DdP is still better than CMOS even after adjusting by a conservative 
factor for large-scale cooling overhead (1,000×).

Question: Could some other reversible technology 
do even better than this?
◦ We have a project at Sandia exploring one possible 

superconductor-based approach for this (more later)…
◦ But, what are the fundamental (technology-independent) limits, if  any?

17

RQFP =
Reversible

Quantum Flux
Parametron

(Yokohama U.)

Data from
T. Yamae,
ASC ‘18
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Can we envision reversible computing as 
a deterministic elastic interaction process?

Historical origin of  this concept:
◦ Fredkin & Toffoli’s Billard Ball Model of  

computation (“Conservative Logic,” IJTP 1982).
◦ Based on elastic collisions between moving objects.
◦ Spawned a subfield of  “collision-based computing.”

◦ Using localized pulses/solitons in various media.

No power-clock driving signals needed!
◦ Devices operate when data signals arrive.
◦ The operation energy is carried by the signal itself.

◦ Most of  the signal energy is preserved in outgoing signals.

However, all (or almost all) of  the existing design concepts for ballistic reversible computing invoke 
implicitly synchronized arrivals of  ballistically-propagating signals…

◦ Making that approach work in reality presents some serious difficulties, however:
◦ Unrealistic in practice to assume precise alignment of  signal arrival times.

◦ Thermal fluctuations & quantum uncertainty, at minimum, are always present.
◦ Any relative timing uncertainty leads to chaotic dynamics when signals interact.

◦ Exponentially-increasing uncertainties in the dynamical trajectory.
◦ Deliberate resynchronization of  signals whose timing relationship has become uncertain incurs an inevitable energy cost.

Can we come up with a new ballistic model of  reversible computing that avoids these problems?

Ballistic Reversible Computing18



Ballistic Asynchronous Reversible Computing (BARC)
Problem: Conservative (dissipationless) dynamical systems tend to exhibit chaotic behavior…

◦ This results from direct nonlinear interactions between multiple continuous dynamical degrees of  freedom 
(DOFs), which amplify uncertainties, exponentially compounding them over time…
◦ E.g., positions/velocities of  ballistically-propagating “balls” 

◦ Or more generally, any localized, cohesive, momentum-bearing entity:  Particles, pulses, quasiparticles, solitons…

Core insight: To greatly reduce or eliminate this tendency towards dynamical chaos…
◦ Simply avoid direct interaction between continuous DOFs of  different ballistically-propagating entities

Require localized pulses arrive asynchronously—and further, at clearly distinct, non-overlapping times
◦ Device’s dynamical trajectory is then independent of  the precise (absolute and relative) pulse arrival times

◦ As a result, timing uncertainty per logic stage can now accumulate only linearly, not exponentially!

◦ Only relatively occasional re-synchronization will be needed

◦ For devices to still be capable of  doing logic, they must now maintain an internal discrete (digitally-
precise) state variable—a stable (or at least metastable) stationary state, e.g., a ground state of  a well

No power-clock signals, unlike in adiabatic designs!
◦ Devices simply operate whenever data pulses arrive
◦ The operation energy is carried by the pulse itself

◦ Most of  the energy is preserved in outgoing pulses

◦ Signal restoration can be carried out incrementally, or periodically

Goal of  current effort at Sandia: Demonstrate BARC principles in an implementation based 
on fluxon dynamics in Superconducting Electronics (SCE)
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One of  our early tasks:  Characterize the simplest nontrivial BARC device functionalities, given a few simple 
design constraints applying to an SCE-based implementation, such as:

◦ (1) Bits encoded in fluxon polarity; (2) Bounded planar circuit conserving flux; (3) Physical symmetries.

Determined through theoretical hand-analysis that the simplest such function is the
1-Bit, 1-Port Reversible Memory (RM) Cell:

◦ Due to its simplicity, this was then the initial target for our subsequent detailed circuit design efforts…

Simplest Fluxon-Based (bipolarized) BARC Function

+Φ଴

Ballistic interconnect (PTL or LJJ)

Moving
fluxon

−Φ଴

Stationary
SFQ

Some planar, unbiased, reactive SCE circuit w. a continuous 
superconducting boundary
• Only contains L’s, M’s, C’s, and unshunted JJs
• Junctions should mostly be subcritical (avoids RN)
• Conserves total flux, approximately nondissipative

−Φ଴ +Φ଴

Desired circuit behavior (NOTE: conserves flux, respects T 
symmetry & logical reversibility):
• If polarities are opposite, they are swapped (shown)
• If polarities are identical, input fluxon reflects

back out with no change in polarity (not shown)
• (Deterministic) elastic ‘scattering’ type interaction:  Input 

fluxon’s kinetic energy is (nearly) preserved in output fluxon

RM icon:

RM Transition Table



RM—First working (in simulation) implementation!
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Erik DeBenedictis: “Try just strapping a JJ across that loop.”
◦ This actually works!

“Entrance” JJ sized to = about 5 LJJ unit cells (~1/2 pulse width)
◦ I first tried it twice as large, & the fluxons annihilated instead…

◦ “If  a 15 μA JJ rotates by 2π, maybe ½ that will rotate by 4π”

Loop inductor sized so ±1 SFQ will fit in the loop (but not ±2)
◦ JJ is sitting a bit below critical with ± 1

WRspice simulations with ±1 fluxon initially in the loop
◦ Uses ic parameter, & uic option to .tran command

◦ Produces initial ringing due to overly-constricted initial flux
◦ Can damp w. small shunt G



Resettable version of RM cell—Designed & Fabricated!
Apply current pulse of  appropriate sign to flush the stored flux (the pulse here flushes out positive flux)

◦ To flush either polarity  Do both (±) resets in succession

22

DC-SFQ SFQ-DC

LJJ LJJReversible Memory Cell
+ SQUID Detector

SQUID
Detector

Reversible Memory Cell

DC-SFQ & LJJ

RM Cell & SQUID

Fabrication at SeeQC
with support from ACI



III. Modeling Classical Reversible 
Computers as (Non-Equilibrium) 
Open Quantum Systems

Explor ing Fundamenta l  Diss ipat ion  Limits  o f  
Rever s ib le  Comput ing  Technologies  f r om Non-
equi l ibr ium Quantum Ther modynamics



Modeling Classical Digital Computing Machines
as Open Quantum Systems

Basic open quantum systems picture:
◦ Computer system with internal power supply, expels waste heat to thermal env. .

◦ Idealize environment as very large, & as being in an equilibrium state, at some ~constant temperature 𝑇.
◦ As per Stinespring, explicit assumption that the environment does not preserve correlations (Markovian assumption).

Very simple, generic picture of  the abstract computational state space:
◦ Some set ଵ ଶ ௡ of  distinct abstract computational states.

◦ This set can be time-dependent, but might be defined only at discrete times; 𝑪(𝜏κ) for integer index κ.

◦ Augmented with an extra state ୄ meaning “the machine is not in any valid state.”

Important concept of  a proto-computational basis for the system :
◦ This can be any o.n. basis for the Hilbert space 𝔖 of  whose set of  basis vectors 

partitions into equivalence classes ௜ for s.t. for any ௜, a 
quantum state with is unambiguously interpretable as representing ௜.
◦ We can even have a time-dependent 𝓑(𝑡), if  it’s convenient for the state representation to be changing in time.

◦ Note that for any given equivalence class ௜ , arbitrary superpositions of  basis vectors in 
the basis subset ௜ also unambiguously represent ௜.
◦ Each basis subset 𝑩௜ thus spans a subspace ℋ௜ of  ℋ𝔖 corresponding to computational state 𝑐 = 𝑐௜.

◦ The subspace basis 𝑩௜ may be chosen to be any basis for ℋ௜ (makes no difference).

24

From M. Frank & K. Shukla, Entropy 23(6), 701 (2021).  doi:10.3390/e23060701
(Cover article, special issue on “Physical Information and the Physical Foundations of Computation.”)



Computational vs. Non-computational Subsystems of a Computer

Conceptually, we can divide up the computer system into two subsystems:

◦ The computational subsystem is an abstract subsystem holding the digital state, .

◦ The non-computational subsystem carries everything else that makes up the complete 
physical state of  system .

In general, the Hilbert space of  depends on the computational state of  .

◦ The non-computational Hilbert space 𝔑
௖ corresponding to computational state ௜ is 

simply that ௜ that’s spanned by the protocomputational basis subset ௜ . 

Then, formally speaking, the Hilbert space 𝔖 of  the entire system can be 
expressed as a subspace sum of  the non-computational Hilbert spaces 𝔑

௖ .

఼

This simply means, a general vector in 𝔖 is a sum of  vectors in the 𝔑
௖ , where the 

sub-bases for all the 𝔑
௖ are all mutually orthogonal (as is true in our case).

25



Representing the Quantum State of a Classical Computer
as a Block-Diagonal Density Matrix 

Each block in the density matrix represents a mixed quantum state of  the non-computational subsystem ௖
when the computational state is some particular ௜, weighted by the probability of  that state.

We assume there are no coherences between blocks (i.e., decoherence is very fast).
◦ That’s why this is a classical computer, and not a quantum one!

Given that the computational states themselves are stable vs. decoherence, it 
follows that the the blocks must contain the natural pointer states a.k.a. any 
decoherence-free subspaces of  the system.

◦ Decoherence-free e.g. if  they’re already fully decohered by environment interaction.

26

Max-ent density matrix for state 𝑐ଶ



Computational Operations, Types of Operations, and 
Their Physical Representations

A classical computational operation ௦
௧ , in general, is just a (possibly 

partial) stochastic map between the computational state sets and at
two discrete points in time ௞భ

and ௞మ
; that is:

௦
௧

where denotes the normalized probability distributions over the given set.

Deterministic operations yield only single-valued (point) distributions.
◦ whereas stochastic ones have at least one case with a multi-point distribution.

Reversible operations have all mutually non-overlapping distributions.
◦ while irreversible ones have at least one output state that’s reachable with nonzero 

probability from at least two initial states in the allowed domain.

Physically speaking, computational operations are
implemented by transformations of  the basis subsets

௜ ௞ corresponding to computational states ௜ ௞ .
◦ Irreversible operations imply merging of  basis subsets.

◦ Stochastic operations imply splitting of  basis subsets.

27



The Fundamental Theorem of the Thermodynamics of Computing 
This theorem (FTTC) asserts the inter-convertibility of  entropy between the 
computational and non-computational subsystems.

◦ By merging states, irreversible computational operations can move entropy 
from the computational subsystem to the non-computational subsystem.

◦ By splitting states, stochastic computational operations can move entropy 
from the non-computational subsystem to the computational subsystem.

◦ NOTE: We distinguish FTTC from Landauer’s Principle proper!
◦ L.P. refers more specifically to an information loss requiring an increase in total entropy.

Setup: Let 𝔖 represent a microstate (pure quantum state) of  the 
computing system .

◦ More precisely, let 𝜙 be hypothetically sampled by applying a complete 
projective measurement of  𝔖 onto some protocomputational basis 𝓑.
◦ Thus 𝜙 can be identified as 𝜙௜ , corresponding to some 𝑏௜ ∈ 𝓑. 

◦ Probability distribution 𝑝(𝜙௜) is given by Born rule, or (equivalently) by the 
diagonal elements of  the 𝜌𝔖 density matrix in the 𝓑 basis.

This implies a derived prob. distribution over the computational states:

௝ ௜

థ೔ ∈ 𝒄ೕ

And the total entropy of  the physical state of  the computer system 
(random variable ) can always be written as ,

◦ where 𝐶 is a random variable for the computational state, and 𝑆, 𝐻 are the 
entropies based on the probability distributions 𝑝, 𝑃 respectively.
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Total entropy is always the sum of the computational entropy and non-computational entropy .

Non-Computational
Subsystem ( )

non-computational / 
conditional entropy

𝔑

Computational 
Subsystem ( )

info. entropy 𝐻 𝐶 = − ∑ 𝑃 log 𝑃

Computing System (
total entropy 



Proof of Landauer’s Principle (example for correlated-subsystems case)

Let 𝑋, 𝑌 be state variables corresponding to any two disjoint 
computational subsystems 𝔛, 𝔜 within a larger computer ℭ.

◦ There is a joint probability distribution 𝑃 𝑋, 𝑌 , and a corresponding joint 
entropy 𝐻 𝑋, 𝑌 .

◦ Reduced (marginal) entropies 𝐻 𝑋 , 𝐻 𝑌 of  the individual subsystems are 
defined in the usual way. (Note, this are not, in general, “true” entropy!) 

The mutual information between 𝔛 and 𝔜 is defined as:  

𝐼 𝑋; 𝑌 ≝ 𝐻 𝑋 + 𝐻 𝑌 − 𝐻 𝑋, 𝑌 .

Now, define the “independent entropy in 𝔜” as the rest of 𝔜’s (reduced 
subsystem) entropy, besides the mutual information 𝐼 that 𝔜 has with 𝔛:

𝑆୧୬ୢ 𝑌 ≝ 𝐻 𝑌 − 𝐼 𝑋; 𝑌 = 𝐻 𝑌 𝑋 ,

◦ This is just the same as the conditional entropy of 𝔜, conditioned on 𝔛.

Now, consider erasing 𝔜 via any oblivious physical mechanism… 
◦ Meaning, force 𝐻 𝑌 = 0 unconditionally, without making use of  𝑋 or any other 

information we may have about 𝑌.
◦ E.g., remove a potential energy barrier separating 𝑌 = 0 and 𝑌 = 1 computational states, and 

interpret the new merged computational state as meaning 𝑌 = 0.

And assume, in general, non-computational information (in 𝔑) will fairly 
rapidly thermalize. (If  not, then why even consider it non-computational?)

◦ This thermalization process (which occurs by the time information is ejected 
to 𝔈) is when/where the absolute entropy increase happens in Landauer!
◦ By assumption, environment evolution is not tracked, ergo any ℭ-𝔈 correlation is lost.
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Q.E.D.! ■

← Min. incr. in total entropy!
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Oblivious erasure of a correlated bit

Note that we could try to “reverse” the whole erasure process to 
restore the original reduced entropy of  the subsystem…

But now, ୬ୣ୵ (any correlations have become lost!)
◦ ∴ 𝑆୧୬ୢ 𝑌 = 𝐻 𝑌 , ∴ Δ𝑆୧୬ୢ 𝑌 = 𝐼 𝑋; 𝑌 ୭୰୧୥ = Δ𝑆୲୭୲.

If, originally, was (deterministically) computed from , then:
◦ 𝐻 𝑌 𝑋 ୭୰୧୥ = 0, i.e., 𝑆୧୬ୢ 𝑌 = 0, so 𝐻 𝑌 = 𝐼 𝑋; 𝑌 ୭୰୧୥.

◦ Apparent entropy of  all computed bits is actually entirely mutual information! 

◦ a.k.a. “information-bearing entropy” in Anderson’s terminology

Independent entropy (and total universe entropy!) increased by 
Δ𝑆୲୭୲ = Δ𝑆୧୬ୢ 𝑌 = 𝐼 𝑋; 𝑌 ୭୰୧୥ = 𝐻 𝑌 .

Erasing computed (as opposed to random) bits in 
isolation (without using knowledge/correlations) turns their 
digital information into new physical entropy.

(Note that this proof not does use any equilibrium assumptions whatsoever!)



What does it mean for the unitary time-evolution of a system 
to implement a classical computation?

Given our framework, this has a very natural, straightforward definition.
◦ This is more formally defined in our paper, but below is a quick informal description.

We say that the quantum time-evolution of  a given computer system correctly 
implements the classical computational operation between times and for the 
initial mixed state if  and only if, after the unitary time evolution has occurred, 
and we adjust as needed for any time-dependence in the protocomputational basis 

, and we allow the resulting state to decohere naturally, we end up with the correct 
probability distribution over the final computational states that’s 
implied by applying to the initial-state distribution that’s implied by .

◦ In particular, we don’t care about any details of  the resulting quantum state ௧ other than the 
overall distribution over classical computational states that it implies.

Here’s a concise notation for expressing the above condition:
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A computation, defined as the abstract operation 𝑂: 𝑪 𝑠 → 𝑪(𝑡) being 
performed from the starting quantum statistical operating context 𝜌௦.

Unitary time evolution of computer system 𝔖 from time 𝑠 to 𝑡,
with a possible change in protocomputational basis 𝓑 𝑠 → 𝓑(𝑡).

“implements”



IV.  Fundamental Limits on Reversible 
Computing from NEQT:  First Steps

Explor ing Fundamenta l  Diss ipat ion  Limits  o f  
Rever s ib le  Comput ing  Technologies  f r om Non-
equi l ibr ium Quantum Ther modynamics



• Want to characterize dissipation of  reversible operations.

• Do fundamental limits exist? If  so, what is the dependence on fundamental parameters?

• Most general limits for practical models: Use nonequilibrium quantum thermodynamics (NEQT).

• Unitary evolution: No dissipation, but operation time is bounded by quantum speed limit (QSL).

• Dissipation as a function of  delay (𝐷 𝑑 ). Goal: retrieve protocol-based, device-independent expression.

• Note that, in principle, 𝐷 𝑑  is not directly determined by QSL (since not all energy invested need be dissipated), 

but we can use QSL to obtain a non-tight upper bound on the required dissipation.

• For quantum limits: Natural framework: Represent classical operations as quantum channels.

• Computational states 𝑐௜ form equivalence classes over (physical) quantum states 𝜓 . Coherences allowed 

between different 𝜓 corresponding to the same 𝑐௜ , but not between 𝜓 corresponding to different 𝑐௜ . 

• Thus, each 𝑐௜ is a single decoherence-free subspace (DFS) of  overall Hilbert space. Classical computation: 

operations transforming states from one block to another, with no states leaving the block structure.

• Computation embedded in open system. Information can “leak” into environment, but (we assume) 

cannot be recaptured at any future time. Thus, dynamics represented by Markovian (GKSL) evolution.

• GKSL dynamics with multiple asymptotic states (V. V. Albert et al. Phys. Rev. X 6, 041031 (2016)): asymptotic states 

form subspace in overall dynamics. Provides most general embedding of  quantum channels in GKSL structure.

Reversible Operations as Quantum Channels
(Work by K. Shukla, 

Brown U.
doi:10.3390/e23060701)



• Stinespring dilation theorem: provides a representation of  quantum channels, 
by embedding them in a larger space. 

• If  𝓢 is the state of  system , can represent any transformation ௧

by examining joint unitary evolution on any larger system that contains .

• Let be universe, comprising in initial state ୧୬, 𝓢 and env. in initial state ୧୬, 𝔈. 

• Time evolution of  ୧୬, 𝓢 is given by:

୧୬, 𝓢 ௧ ୧୬, 𝓢 𝔈 ௧, 𝔘 ୧୬, 𝓢 ୧୬, 𝔈 ௧, 𝔘
ற

𝔈
ି௜ு෡𝔘 ௧೑ ି ௧బ

୧୬, 𝓢 ୧୬, 𝔈
௜ு෡𝔘 ௧ ೑ି ௧బ

• Note, final trace here is over . Thus, map ௧ ୧୬, 𝓢 𝓢 is also a density matrix over .

• Thermal operations (TOs): set of  all (thermodynamically) possible transformations on that can be 
implemented at no energetic cost. Given by setting initial state of  as thermal (Gibbs) state 𝔈:

୧୬, 𝓢 ௧ ୧୬, 𝓢 𝔈 ௧, 𝔘 ୧୬, 𝓢 𝔈 ௧, 𝔘
ற

• Necessary conditions for TOs and for catalytic TOs (next slide) described by resource theory of  quantum 
thermodynamics (RTQT). 

• Provides free states (i.e., states that can be generated at no thermodynamic cost) and free operations (TOs).

• References for introduction to RTQT: N. H. Y. Ng and M. P. Woods, in Thermodynamics in the Quantum Regime, ed. by F. Binder et al. (Springer 
Nature, Cham, 2018) and M. Lostalgio, Rep. Prog. Phys. 82, 114001 (2019).).

Stinespring Dilation Theorem and Thermal Operations
Environment System

Universe 



• To model transformations involving a catalyst, we can extend the notion
of  TOs to catalytic thermal operations (CTOs).

• Divide system into subsystems and . 
• Catalyst is required for transformation ୧୬, 𝔗 ௧ ୧୬, 𝔗 on . 
• Catalyst locally starts & ends in the same state: 

• If  𝜎𝔎 is initial state of  𝔎, then partial trace over 𝔗𝔈 after global unitary evolution must return 𝜎𝔎.

• Most general type of  CTO (M. Müller, Phys. Rev. X 8, 041051 (2016)): Start with ୧୬, 𝔗 as initial state of  and 𝔎 as 
initial state of  (with ୧୬, 𝔗 𝔎 as initial state of  ), and with thermal state 𝔈 of  environment as initial 
state of  . Most general CTO on are given by:

୧୬, 𝔗 𝔎 𝔗𝔎 𝔈 ௧, 𝔗𝔎𝔈 ୧୬, 𝔗 𝔎 𝔈 ௧, 𝔗𝔎𝔈
ற

• 𝔗𝔈 𝔗𝔎 ௧ ୧୬, 𝔗 ଵ
for any ା (CTO corresponds to desired transformation ୧୬, 𝔗 ௧ ୧୬, 𝔗 locally on )

• 𝔗𝔈 𝔗𝔎 𝔎 (catalyst must locally end in the same state it started) and ௧, 𝔗𝔎𝔈 𝔗𝔎𝔈 .

• Realizable if  and only if  Helmholtz free energy decreases; i.e., if  𝔗𝔈 𝔗𝔎 ୧୬, 𝔗 for 𝔗𝔈 𝔗𝔎 .
• Quantum mutual info (QMI) between and after operation can be made as small as possible (but not zero): 

For any ା, there exists some and 𝔗𝔎 such that:

𝔗𝔎 𝔎𝔈 𝔗𝔎 𝔗𝔈 𝔗𝔎

• Reversible computing can be modeled using this most general form of  CTOs. (Preservation of  correlation (QMI) 
between and avoids the Landauer cost that would be incurred if  this QMI were ejected into the environment.)

• Also, classical information processing (IP) exhibits a lower bound on dissipation than the more general quantum case for IP 
operations (D. Bedingham and O. Maroney, New J. Phys. 18, 113050 (2016)).

General Catalytic Thermal Operations
System 

Target 
(Transformed)

Subsystem
Catalyst

Env.



𝔗𝔎௥,  𝔗 𝔎

𝔗𝔎

𝔗𝔎 ௥, 𝔗𝔗𝔎

𝔎 𝔗𝔎 κ, 𝔗

κ, 𝔗

𝔎 𝔗𝔎 ௥, 𝔗

= =

• By composing two general CTOs, can start in a reset state ௥, 𝔗, evolve 
to a new state κ, 𝔗 (corresponding to a computation), and then be rest by 
the catalyst back to the reset state. (See figure )

• In standard CTOs, we focus on a subsystem of  interest and a catalyst. 
• However, for a system where multiple informational degrees of  freedom 

propagate independently of  external control mechanisms, each information 
carrier is simultaneously a subsystem of  interest in its own right, and can act 
like a catalyst for the other carriers. 

• Ex.: ballistic reversible computing models.

• Can further generalize CTOs to model computational processes in which 
interactions between information carriers yield transformations on all 
subsystems jointly.

• We can also generalize the notion of  a catalyst with a single reset state to 
a subsystem with distinguished states, transforming another system.

• This then can model the computational notion of  a finite state machine.
• Example: In BARC, the circuit elements are Mealy machines transforming I/O symbols.

Computational Models from Generalized CTOs

+Φ଴ ×

In ballistic asynchronous reversible computing (BARC), a part of the system that is unchanged
by a given interaction can be considered a catalyst for transformation of other parts.

+Φ଴ +Φ଴ × +Φ଴



Applications to Quantum Computing

• Our theoretical framework is equally (and arguably, even more!) applicable to 
examining the thermodynamics of quantum computing:
• Quantum channel embedding: Any quantum channel can be embedded in an appropriate 

asymptotic subspace. (V. Albert thesis, Sec. 2.1.4.)

• Systems with a single (or multiple) DFS blocks can encode multiple qubit systems. (V. Albert 
thesis, Ch. 3.)

• Thus, extending the thermodynamic dissipation length and TURs to multiple NESSs can allow 
us to calculate these quantities for any quantum channel we wish!

• A quantum computation can be viewed as a quantum channel that transforms the states in transit.

• Further, even our main goal of developing more efficient technologies for classical
computing can find eventual application in engineering more effective low-power 
digital systems for embedded cryogenic control of quantum architectures.
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Can dissipation scale better than linearly with speed?

Some observations from Pidaparthi & 
Lent (2018) suggest Yes!
◦ Landau-Zener (1932) formula for quantum

transitions in e.g. scattering processes with
a missed level crossing…
◦ Probability of  exciting the high-energy state

(which then decays dissipatively) scales down
exponentially as a function of  speed…
◦ This scaling is commonly seen in many quantum systems!

◦ Thus, dissipation-delay product may have no lower bound
for quantum adiabatic transitions—if this kind of  
scaling can actually be realized in practice.
◦ I.e., in the context of  a complete engineered system.

◦ Question: Will unmodeled details (e.g., in the driving 
system) fundamentally prevent this, or not? 

37



FIG. 10. Dissipated energy of an open system as a function of switching speed for 
different dissipation time constants. The dashed line is the excess energy of an 
isolated system. Here, the environmental temperature 𝑘B𝑇 / 𝛾 =  0.5.
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DOI: 10.1063/5.0033633
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The “Sweet Spot” in Operation Speed in Between the 
Relaxation and Thermal Coupling Timescales

Lesson: When thermal coupling is 
low, dissipation from a dynamical 
state transition can be substantially 
suppressed compared to the 
background linear adiabatic scaling.

A similar result for ballistic superconducting
circuits in Crutchfield, “Sub-Gigahertz Landauer
Momentum Computing,” arXiv:2202.07122:



Conclusion
Reversible computing will be essential to maintain ongoing improvements in the 
energy efficiency of  general digital computing.

◦ This follows from Landauer’s principle; but non-reversible computing approaches may 
reach practical limits even before the efficiency bound from Landauer’s limit is reached.

As we approach the limits of  conventional computing, understanding the 
fundamental physical limits of  reversible computing will become increasingly 
important in the coming decades.

◦ Essential if  we want guidance in how to develop new physical mechanisms for 
computing that approach these limits as closely as possible.

The physics of  reversible computing is a greatly under-studied topic that is ripe 
for increased attention.

◦ A wide array of  powerful theoretical tools from fields such as non-equilibrium quantum 
thermodynamics (NEQT) are available to tackle this subject.

In this talk, we have surveyed the theoretical approach we are pursuing to better 
understand the quantum thermodynamic limits of  reversible computing.

◦ Along the way, we reviewed why the classic insights of  Landauer and Bennett can 
easily be seen to be completely valid in a modern theoretical framework.

◦ Much work remains to be done, and we invite interested collaborators to join us!
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